2023年度數學Mock卷英文版答案參考及常犯錯誤報告 Marking Scheme

This document was prepared for markers＇reference．It should not be regarded as a set of model answers． Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care．

General Marking Instructions

1．It is very important that all markers should adhere as closely as possible to the marking scheme．In many cases，however，candidates will have obtained a correct answer by an alternative method not specified in the marking scheme．In general，a correct answer merits all the marks allocated to that part，unless a particular method has been specified in the question．Markers should be patient in marking alternative solutions not specified in the marking scheme．

2．In the marking scheme，marks are classified into the following three categories：
＇M＇marks
＇A＇marks
Marks without＇M＇or＇A＇
awarded for correct methods being used； awarded for the accuracy of the answers； awarded for correctly completing a proof or arriving at an answer given in a question．
In a question consisting of several parts each depending on the previous parts，＇M＇marks should be awarded to steps or methods correctly deduced from previous answers，even if these answers are erroneous． However，＇A＇marks for the corresponding answers should NOT be awarded（unless otherwise specified）．

3．For the convenience of markers，the marking scheme was written as detailed as possible．However，it is still likely that candidates would not present their solution in the same explicit manner，e．g．some steps would either be omitted or stated implicitly．In such cases，markers should exercise their discretion in marking candidates＇work．In general，marks for a certain step should be awarded if candidates＇solution indicated that the relevant concept／technique had been used．

4．In marking candidates＇work，the benefit of doubt should be given in the candidates＇favour．
5．In the marking scheme，＇r．t．＇stands for＇accepting answers which can be rounded off to＇and＇f．t．＇stands for ＇follow through＇．Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles．All fractional answers must be simplified．

Paper 1

$$
\text { 1. } \begin{aligned}
& \frac{m^{2} n^{6}}{\left(m^{-5} n^{4}\right)^{-3}} \\
= & \frac{m^{2} n^{6}}{m^{15} n^{-12}} \\
= & \frac{n^{6+12}}{m^{15-2}} \\
= & \frac{n^{18}}{m^{13}}
\end{aligned}
$$

2. $u=\frac{v w+1}{2-w}$

$$
u(2-w)=v w+1
$$

$2 u-u w=v w+1$
$-u w-v w=1-2 u$
$-w(u+v)=1-2 u$
$w=\frac{2 u-1}{u+v}$
3. (a) $18 x^{2}-50 y^{2}$

$$
=2\left(9 x^{2}-25 y^{2}\right)
$$

$$
=2(3 x-5 y)(3 x+5 y)
$$

(b) $\begin{aligned} & 9 x-15 y-18 x^{2}+50 y^{2} \\ = & 9 x-15 y-2(3 x-5 y)(3 x+5 y) \\ = & 3(3 x-5 y)-2(3 x-5 y)(3 x+5 y) \\ = & (3 x-5 y)(3-6 x-10 y)\end{aligned}$
4. (a) 16.8
(b) 16.734
(c) 17

Solution	Marks	Remarks
5. Let $\$ x$ and $\$ y$ be the price of a pen case and the total price of a pencil		
sharpener and a hole puncher respectively.		
Then, we have $x+5 y=363$ and $3 x+2 y=322$.	$1 \mathrm{~A}+1 \mathrm{~A}$	
$2 x-5(3 x)=2(363)-5(322)$	1 M	for getting a linear equation in x or y only

$-13 x=-884$
$x=68$
$y=59$
The required price
$=4(68)+59$
$=\$ 331$
1A
$x=68$
= \$331

Let $\$ x$ be the price of a pen case.
$3 x+2\left(\frac{363-x}{5}\right)=322$
$\frac{13 x}{5}+\frac{726}{5}=322$

The required price
$=4(68)+\frac{363-68}{5}$
$1 \mathrm{M}+1 \mathrm{~A}+1 \mathrm{~A}\left\{\begin{array}{l}1 \mathrm{~A} \text { for } y=\frac{363-x}{5} \\ +1 \mathrm{M} \text { for } 3 x+2 y\end{array}\right.$
$x>\frac{9}{4}$
By (a), we have $\frac{9}{4}<x \leq 4$.
Thus, the required number is 2 .
for putting x on one side
1A

1A $x>2.25$

Solution	Marks	Remarks
7. Note that $\angle A B E=\angle A D E, \angle D B E=\angle D A E$ and $\angle A D E=\angle D A E$.	1 M	for either one

So, we have $\angle A B E=\angle A D E=\angle D A E=\angle D B E=32^{\circ}$.
Let F be the point of intersection of $A C$ and $B D$.
$\angle B A C$
$=180^{\circ}-\angle A F B-\angle A B D$
$=180^{\circ}-90^{\circ}-\left(32^{\circ}+32^{\circ}\right)$
$=26^{\circ}$
Since $B D$ is the perpendicular bisector of $A C, B D$ passes through the centre of the circle.
Hence, $B D$ is a diameter of the circle.
Note that $\angle B A D=90^{\circ}$.
$\angle C A E$
$=\angle D A E+\angle B A D-\angle B A C$
$=32^{\circ}+90^{\circ}-26^{\circ}$
$=96^{\circ}$
$\angle C D E$
$=180^{\circ}-\angle C A E$
$=180^{\circ}-96^{\circ}$
$=84^{\circ}$
Note that $\angle A B E=\angle A D E, \angle D B E=\angle D A E$ and $\angle A D E=\angle D A E$.
So, we have $\angle A B E=\angle A D E=\angle D A E=\angle D B E=32^{\circ}$.
Let F be the point of intersection of $A C$ and $B D$.
$\angle B A C$
$=180^{\circ}-\angle A F B-\angle A B D$
$=180^{\circ}-90^{\circ}-\left(32^{\circ}+32^{\circ}\right)$
$=26^{\circ}$
Since $B D$ is the perpendicular bisector of $A C, B D$ passes through the centre of the circle.
Hence, $B D$ is a diameter of the circle.
Note that $\angle B E D=90^{\circ}$.

$$
\angle B D E
$$

$=180^{\circ}-\angle B E D-\angle D B E$
$=180^{\circ}-90^{\circ}-32^{\circ}$
$=58^{\circ}$
Note that $\angle B A C=\angle B D C=26^{\circ}$.
$\angle C D E$
$=\angle B D E+\angle B D C$
$=58^{\circ}+26^{\circ}$
$=84^{\circ}$

1M \quad for either one

1A

1 M
1M

1A

1A

M

Hong Kong

8. (a) \quad The median	
	53 thousand dollars

The range
$=86-32$
$=54$ thousand dollars
The inter-quartile range
$=65-41$
$=24$ thousand dollars
(b) Note that the median of the monthly rents of the shops of the shopping mall after the redecoration is 66 thousand dollars which is greater than the upper quartile of the monthly rents of the shops of the shopping mall before the redecoration.
Thus, the claim is agreed.

Solution	Mark
	1 A

ft.
$a=12$
So, the base radius and the height of the circular cone are 36 cm and 48 cm respectively.

The total surface area of the circular cone
$=\pi(36)^{2}+\pi(36) \sqrt{36^{2}+48^{2}}$
$=3456 \pi \mathrm{~cm}^{2}$

10. (a)	Let $\mathrm{f}(x)=p(x+2)^{2}+q$
	Since $\mathrm{f}(0)=-45$ and f
	Solving, we have $p=$
	Thus, we have $\mathrm{f}(x)=$
(b)	$\mathrm{f}(x)=13 x$
	$4(x+2)^{2}-61=13 x$
	$4 x^{2}+3 x-45=0$
	$(x-3)(4 x+15)=0$
	$x=3$ or $x=-\frac{15}{4}$

$a+2 b=20$
11. (a) $\frac{25+20+a+27+29+34+36+38(3)+42+44+(40+b)(2)+47+51+55}{16}=39$

Note that $5 \leq a \leq 7$ and $4 \leq b \leq 7$.
Thus, we have $a=6$ and $b=7$.
(b) (i) Since the original distribution has two modes and their frequencies are both 3 , the frequency of the mode of the new distribution is greater than 3 .
Thus, we have $c=38$ or $c=47$.
(ii) $\mathrm{By}(\mathrm{b})(\mathrm{i})$, there are two cases.

Case 1: $c=38$
The standard deviation
≈ 8.412219214
Case 2: $c=47$
The standard deviation

$$
\approx 8.774260899
$$

Thus, the greatest possible standard deviation of the distribution of the ages of the teachers attending the seminar is 8.77 .
.

MM
MM
$x=3$ or $x=-3.75$

AA

1 M

AA
-(2)

(2)
--(3)

M
)
Remarks

MM

(b) (i) $\frac{C E}{A C}=\frac{C D}{B C}$
(AA) (equiangular)
$\frac{C E}{52}=\frac{25}{65}$
$C E=20 \mathrm{~cm}$
$A E^{2}+C E^{2}$
$=48^{2}+20^{2}$
$=2704$
$=52^{2}$
$=A C^{2}$
Therefore, $\angle A E C$ is a right angle.
Thus, $\triangle C D E$ is a right-angled triangle.
(ii) By (a)(ii), we have $\angle B A C=\angle D E C=90^{\circ}$.

$$
\begin{aligned}
& A B \\
= & \sqrt{B C^{2}-A C^{2}} \\
= & \sqrt{65^{2}-52^{2}} \\
= & 39 \mathrm{~cm}
\end{aligned}
$$

The area of $\triangle A B C$
$=\frac{1}{2}(A B)(A C)$
$=\frac{1}{2}(39)(52)$
$=1014 \mathrm{~cm}^{2}$
f.t.
(AA) (equiangular)

Solution
14. (a) \quadLet (h, k) be the coordinates of G. Then, we have $2 h+5 k-161=0$. $A G=B G$ $\sqrt{(h-9)^{2}+(k-26)^{2}}=\sqrt{(h-33)^{2}+(k-44)^{2}}$ $h^{2}-18 h+81+k^{2}-52 k+676=h^{2}-66 h+1089+k^{2}-88 k+1936$ $4 h+3 k-189=0$

Solving, we have $h=33$ and $k=19$.
The equation of C is
$(x-33)^{2}+(y-19)^{2}=(9-33)^{2}+(26-19)^{2}$
$(x-33)^{2}+(y-19)^{2}=625$
(b) (i) Γ is the perpendicular bisector of the line segment $A B$.
(ii) (1) Let d be the y-coordinate of D.

The slope of $A B$
$=\frac{44-26}{33-9}$
$=\frac{3}{4}$
Note that the slope of $D G$ is $\frac{19-d}{33-0}$.
Hence, we have $\left(\frac{19-d}{33-0}\right)\left(\frac{3}{4}\right)=-1$.
Solving, we have $d=63$.
The distance between D and G
$=\sqrt{(0-33)^{2}+(63-19)^{2}}$
$=55$

$$
=55
$$

1A $x^{2}+y^{2}-66 x-38 y+825=0$

(2)	$A B$
$=$	Solution
	$=30$

Let M be the mid-point of $A B$.
Note that $A M=15$.
Also note that the radius of C is 25 .
GM
$=\sqrt{A G^{2}-A M^{2}}$
$=\sqrt{25^{2}-15^{2}}$
$=20$
The area of $\triangle A B E$
$=\frac{1}{2}(A B)(E M)$
$=\frac{1}{2}(A B)(E G-G M)$
$=\frac{1}{2}(30)(25-20)$
$=75$
The area of $\triangle A D E$
$=\frac{1}{2}(D E)(A M)$
$=\frac{1}{2}(D G-E G)(A M)$
$=\frac{1}{2}(55-25)(15)$
$=225$
The required ratio
$=75: 225$
$=1: 3$

Solution	Marks	Remarks
15. (a) The required probability $\begin{aligned} & =\frac{C_{1}^{1} C_{5}^{6}}{C_{6}^{11}} \\ & =\frac{1}{77} \end{aligned}$	1 M 1 A	for numerator r.t. 0.0130
$\begin{aligned} & \quad \text { The required probability } \\ & =6\left(\frac{1}{11}\right)\left(\frac{6}{10}\right)\left(\frac{5}{9}\right)\left(\frac{4}{8}\right)\left(\frac{3}{7}\right)\left(\frac{2}{6}\right) \\ & =\frac{1}{77} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	for $6 p_{1} p_{2} p_{3} p_{4} p_{5} p_{6}$ r.t. 0.0130
(b) The required probability $\begin{aligned} & =1-\frac{1}{77}-\frac{C_{1}^{1} C_{1}^{4} C_{4}^{6}}{C_{6}^{11}}-\frac{C_{1}^{1} C_{4}^{4} C_{1}^{6}}{C_{6}^{11}}-\frac{C_{6}^{6}}{C_{6}^{11}} \\ & =\frac{389}{462} \end{aligned}$	----------(2) 1M 1A	$\begin{aligned} & \text { for } 1-(\mathrm{a})-p_{7}-p_{8}-p_{9} \\ & \text { r.t. } 0.842 \end{aligned}$
$\begin{aligned} & \text { The required probability } \\ & =1-\frac{1}{77}-30\left(\frac{1}{11}\right)\left(\frac{4}{10}\right)\left(\frac{6}{9}\right)\left(\frac{5}{8}\right)\left(\frac{4}{7}\right)\left(\frac{3}{6}\right)-30\left(\frac{1}{11}\right)\left(\frac{4}{10}\right)\left(\frac{3}{9}\right)\left(\frac{2}{8}\right)\left(\frac{1}{7}\right)\left(\frac{6}{6}\right) \\ & \\ & -\left(\frac{6}{11}\right)\left(\frac{5}{10}\right)\left(\frac{4}{9}\right)\left(\frac{3}{8}\right)\left(\frac{2}{7}\right)\left(\frac{1}{6}\right) \\ & = \\ & =\frac{389}{462} \end{aligned}$	1M 1A	for $1-(\mathrm{a})-p_{10}-p_{11}-p_{12}$ $\text { r.t. } 0.842$
$\begin{aligned} & \quad \text { The required probability } \\ & =\frac{C_{6}^{10}}{C_{6}^{11}}-\frac{C_{6}^{6}}{C_{6}^{11}}+\frac{C_{1}^{1} C_{2}^{4} C_{3}^{6}}{C_{6}^{11}}+\frac{C_{1}^{1} C_{3}^{4} C_{2}^{6}}{C_{6}^{11}} \\ & =\frac{389}{462} \end{aligned}$	1 M 1 A	$\begin{aligned} & \text { for } p_{13}-p_{14}+p_{15}+p_{16} \\ & \text { r.t. } 0.842 \end{aligned}$
$\begin{aligned} & \text { The required probability } \\ & =\left(\frac{10}{11}\right)\left(\frac{9}{10}\right)\left(\frac{8}{9}\right)\left(\frac{7}{8}\right)\left(\frac{6}{7}\right)\left(\frac{5}{6}\right)-\left(\frac{6}{11}\right)\left(\frac{5}{10}\right)\left(\frac{4}{9}\right)\left(\frac{3}{8}\right)\left(\frac{2}{7}\right)\left(\frac{1}{6}\right) \\ & \\ & +60\left(\frac{1}{11}\right)\left(\frac{4}{10}\right)\left(\frac{3}{9}\right)\left(\frac{6}{8}\right)\left(\frac{5}{7}\right)\left(\frac{4}{6}\right)+60\left(\frac{1}{11}\right)\left(\frac{4}{10}\right)\left(\frac{3}{9}\right)\left(\frac{2}{8}\right)\left(\frac{6}{7}\right)\left(\frac{5}{6}\right) \\ & = \\ & =\frac{389}{462} \end{aligned}$	1M $1 \mathrm{~A}$	$\begin{aligned} & \text { for } p_{17}-p_{18}+p_{19}+p_{20} \\ & \text { r.t. } 0.842 \end{aligned}$

| Solution |
| :--- | :--- |
| 16. (a) Let d be the common difference of the arithmetic sequence. |

So, we have $\frac{6}{2}(2(\mathrm{~A}(1))+(6-1) d)=246$ and $\frac{15}{2}(2(\mathrm{~A}(\mathrm{l}))+(15-1) d)=345$
Hence, we have $2(\mathrm{~A}(1))+5 d=82$ and $\mathrm{A}(1)+7 d=23$.
Solving, we have $d=-4$.
Thus, we have $\mathrm{A}(1)=51$.
(b) $\quad \mathrm{G}(1) \mathrm{G}(2) \mathrm{G}(3) \cdots \mathrm{G}(k)>2023$
$\log _{0.9} \mathrm{G}(1)+\log _{0.9} \mathrm{G}(2)+\log _{0.9} \mathrm{G}(3)+\cdots+\log _{0.9} \mathrm{G}(k)<\log _{0.9} 2023$
Note that $\log _{0.9} \mathrm{G}(n)=\mathrm{A}(n)$ for all positive integers n.
$\mathrm{A}(1)+\mathrm{A}(2)+\mathrm{A}(3)+\cdots+\mathrm{A}(k)<\log _{0.9} 2023$
$\frac{k}{2}(2(51)+(k-1)(-4))<\log _{0.9} 2023$
$2 k^{2}-53 k+\log _{0.9} 2023>0$
$k<-1.299490982$ or $k>27.79949098$
Thus, the least value of k is 28 .

1A

17. (a) \quadPutting $y=m x$ into $x^{2}+y^{2}+12 x-10 y+25=0$, we have $x^{2}+(m x)^{2}+12 x-10(m x)+25=0$

$$
x^{2}+(m x)^{2}+12 x-10(m x)+25=0
$$

$$
\left(m^{2}+1\right) x^{2}+(-10 m+12) x+25=0
$$

Since L and C intersect at two distinct points, we have
$(-10 m+12)^{2}-4\left(m^{2}+1\right)(25)>0$
$-240 m+44>0$
$m<\frac{11}{60}$
(b) Since Q and R lie on C and the circumcentre of $\triangle P Q R$ is the centre of C, P lies on C.
Since P, Q and R are not collinear, P does not lie on L for each value of m in the range found in (a).
Denote the origin by O.
Note that L is the straight line passing through the O with slope m.
There are two cases.
Case 1: The straight line $O P$ is a not vertical line.
Note that the straight line $O P$ intersects C at only one point.
By (a), the slope of $O P$ is $\frac{11}{60}$.
$\left(\left(\frac{11}{60}\right)^{2}+1\right) x^{2}+\left(-10\left(\frac{11}{60}\right)+12\right) x+25=0$
$3721 x^{2}+36600 x+90000=0$
$(61 x+300)^{2}=0$
$x=-\frac{300}{61}$
Putting $x=-\frac{300}{61}$ into $y=\frac{11}{60} x$, we have $y=-\frac{55}{61}$.
Therefore, the coordinates of P are $\left(-\frac{300}{61},-\frac{55}{61}\right)$.
Case 2: The straight line $O P$ is a vertical line.
Putting $x=0$ into $x^{2}+y^{2}+12 x-10 y+25=0$, we have
$y^{2}-10 y+25=0$
$(y-5)^{2}=0$
$y=5$
Therefore, the coordinates of P are $(0,5)$.
Thus, the coordinates of P are $\left(-\frac{300}{61},-\frac{55}{61}\right)$ or $(0,5)$.

Marks	Remarks

Hong Kong

Solution
18. (a) $\begin{array}{l}\text { Since } A \text { lies on the graph of } y=\mathrm{f}(x) \text {, we have }-(2 k)^{2}+6 k(2 k)+c=0 . \\ \text { Thus, we have } c=-8 k^{2} .\end{array}$

(b) $\quad \mathrm{f}(x)$
$=-x^{2}+6 k x-8 k^{2}$
$=-\left(x^{2}-6 k x\right)-8 k^{2}$
$=-\left(x^{2}-6 k x+9 k^{2}-9 k^{2}\right)-8 k^{2}$
$=-(x-3 k)^{2}+k^{2}$
Thus, the coordinates of Q are $\left(3 k, k^{2}\right)$.
(c) (i) $\left(3 k, \frac{-k^{2}}{9}\right)$
(ii) Note that the straight line $x=3 k$ is perpendicular to $A B$ and passes through Q.
So, the orthocentre of $\triangle A B Q$ lies on the straight line $x=3 k$.
Hence, we have $18=3 \mathrm{k}$.
Solving, we have $k=6$.
Note that the coordinates of A, Q and R are $(12,0),(18,36)$ and $(18,-4)$ respectively.
The product of the slope of $A Q$ and the slope of $A R$
$=\left(\frac{36-0}{18-12}\right)\left(\frac{(-4)-0}{18-12}\right)$
$=-4$
$\neq-1$
Hence, we have $\angle Q A R \neq 90^{\circ}$.
Note that B is the reflection image of A with respect to the straight line $Q R$.
So, we have $\angle Q B R=\angle Q A R$.
Hence, we have $\angle Q A R+\angle Q B R \neq 180^{\circ}$.
Thus, A, B, Q are R are not concyclic.
Marks

1M
1A
--(2)

MM
AA
-(2)

AA

AA

AA
ft.

Mocklexam

| Solution | Marks | Remarks |
| :--- | :--- | :---: | :---: |
| | Note that the straight line $x=3 k$ is perpendicular to $A B$ and passes
 through Q.
 So, the orthocentre of $\triangle A B Q$ lies on the straight line $x=3 k$.
 Hence, we have $18=3 k$.
 Solving, we have $k=6$.
 Note that the coordinates of A, Q and R are $(12,0),(18,36)$ and
 $(18,-4)$ respectively.
 $A Q^{2}+A R^{2}$
 $=\left((18-12)^{2}+(36-0)^{2}\right)+\left((18-12)^{2}+((-4)-0)^{2}\right)$
 $=1384$
 $Q R^{2}$
 $=(36-(-4))^{2}$
 $=1600$
 So, we have $A Q^{2}+A R^{2} \neq Q R^{2}$.
 Hence, we have $\angle Q A R \neq 90^{\circ}$.
 Note that B is the reflection image of A with respect to the straight
 line $Q R$.
 So, we have $\angle Q B R=\angle Q A R$.
 Hence, we have $\angle Q A R+\angle Q B R \neq 180^{\circ}$.
 Thus, A, B, Q are R are not concyclic. 1 A | |

19. (a) By sine formula, we have

$$
\frac{I L}{\sin \angle I K L}=\frac{I K}{\sin \angle I L K}
$$

By sine formula, we have
$\frac{J L}{\sin \angle J K L}=\frac{J K}{\sin \angle J L K}$
Hence, we have $\frac{I L \sin \angle J K L}{J L \sin \angle I K L}=\frac{I K \sin \angle J L K}{J K \sin \angle I L K}$.
Since $\angle I L K+\angle J L K=180^{\circ}$, we have $\sin \angle I L K=\sin \angle J L K$.
Thus, we have $\frac{\sin \angle I K L}{\sin \angle J K L}=\frac{(I L)(J K)}{(J L)(I K)}$.
$\begin{aligned} & \text { The area of } \triangle I K L \\ = & \frac{1}{2}(I K)(K L) \sin \angle I K L\end{aligned}$
The area of $\triangle J K L$
$=\frac{1}{2}(J K)(K L) \sin \angle J K L$
Note that $\frac{\text { The area of } \triangle I K L}{\text { The area of } \triangle J K L}=\frac{I L}{J L}$.
Hence, we have $\frac{I K \sin \angle I K L}{J K \sin \angle J K L}=\frac{I L}{J L}$.
Thus, we have $\frac{\sin \angle I K L}{\sin \angle J K L}=\frac{(I L)(J K)}{(J L)(I K)}$.
1

1 M
either one

1
(2)
(b) (i) Let E be the point of intersection of $A C$ and $B D$.
$B E=A B \cos \angle A B E=10 \cos 45^{\circ}=5 \sqrt{2} \mathrm{~cm}$

$$
B E=A B \cos \angle A B E=10 \cos 45^{\circ}=5 \sqrt{2} \mathrm{~cm}
$$

$$
\begin{aligned}
& V E \\
= & \sqrt{V B^{2}-B E^{2}} \\
= & \sqrt{17^{2}-(5 \sqrt{2})^{2}} \\
= & \sqrt{239} \mathrm{~cm}
\end{aligned}
$$

Note that $A E=B E=5 \sqrt{2} \mathrm{~cm}$ and $A C=2 B E=10 \sqrt{2} \mathrm{~cm}$.
By cosine formula, we have

$$
\begin{aligned}
& \cos \angle V A C=\frac{V A^{2}+A E^{2}-V E^{2}}{2(V A)(A E)} \\
& \cos \angle V A C=\frac{18^{2}+(5 \sqrt{2})^{2}-(\sqrt{239})^{2}}{2(18)(5 \sqrt{2})} \\
& \cos \angle V A C=\frac{3 \sqrt{2}}{8}
\end{aligned}
$$

By cosine formula, we have
$V C^{2}=V A^{2}+A C^{2}-2(V A)(A C) \cos \angle V A C$
$V C^{2}=18^{2}+(10 \sqrt{2})^{2}-2(18)(10 \sqrt{2})\left(\frac{3 \sqrt{2}}{8}\right)$
$V C=\sqrt{254} \mathrm{~cm}$
Solution
$\frac{K L}{K L}=\frac{I K \sin \angle J L K}{J K \sin \angle I L K}$.
$\sin \angle J L K$.

Solution	
(ii) (1)	Note that $A Q$ is the perpendicular bisector of
	Let S be the point of intersection of $A Q$ and $P R$
	Note that $\triangle P V S \sim \triangle B V E$.
	So, we have $\frac{V S}{V E}=\frac{V P}{V B}$
	So, we have $\frac{V S}{V E}=\frac{V P}{V B}$
	Hence, we have $V S: E S=3: 2$.
	By (a), we have $\frac{\sin \angle V A Q}{\sin \angle C A Q}=\frac{(V Q)(A C)}{(C Q)(V A)}$ and

$\frac{\sin \angle V A Q}{\sin \angle C A Q}=\frac{(V S)(A E)}{(E S)(V A)}$.
So, we have $\frac{(V Q)(A C)}{(C Q)(V A)}=\frac{(V S)(A E)}{(E S)(V A)}$.
Hence, we have $\frac{V Q}{C Q}=\left(\frac{A E}{A C}\right)\left(\frac{V S}{E S}\right)=\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)=\frac{3}{4}$.
Thus, the required ratio is $3: 4$.
(2) Since $\cos \angle V A C=\frac{3 \sqrt{2}}{8}$, we have $\sin \angle V A C=\frac{\sqrt{46}}{8}$.

The area of $\triangle A V C$
$=\frac{1}{2}(V A)(A C) \sin \angle V A C$
$=\frac{1}{2}(18)(10 \sqrt{2})\left(\frac{\sqrt{46}}{8}\right)$
$=\frac{45 \sqrt{23}}{2} \mathrm{~cm}^{2}$
Note that $\frac{\text { The area of } \triangle A V Q}{\text { The area of } \triangle A V C}=\frac{V Q}{V C}$.
Hence, the area of $\triangle A V Q$ is $\frac{135 \sqrt{23}}{14} \mathrm{~cm}^{2}$.

Note that $\triangle P V S \sim \triangle B V E$.
So, we have $\frac{P S}{B E}=\frac{V P}{V B}$.
Hence, we have $P S=3 \sqrt{2} \mathrm{~cm}$.
The volume of the pyramid $V A P Q R$
$=2($ the volume of the pyramid $V A P Q)$
$=2\left(\frac{1}{3}(\right.$ the area of $\left.\triangle A V Q)(P S)\right)$
$=2\left(\frac{1}{3}\left(\frac{135 \sqrt{23}}{14}\right)(3 \sqrt{2})\right)$
$=\frac{135 \sqrt{46}}{7} \mathrm{~cm}^{3}$

Paper 2

1. A

$$
\frac{\left(3^{5 n}\right)\left(9^{3 n}\right)}{81^{2 n}}=\frac{\left(3^{5 n}\right)\left[\left(3^{2}\right)^{3 n}\right]}{\left(3^{4}\right)^{2 n}}=\frac{\left(3^{5 n}\right)\left(3^{6 n}\right)}{3^{8 n}}=3^{3 n}=\left(3^{3}\right)^{n}=27^{n}
$$

2. D

$$
\begin{aligned}
\frac{1}{p}+\frac{3}{2+q} & =4 \\
\frac{3}{2+q} & =4-\frac{1}{p} \\
& =\frac{4 p-1}{p} \\
2+q & =\frac{3 p}{4 p-1} \\
q & =\frac{3 p}{4 p-1}-2 \\
& =\frac{3 p-2(4 p-1)}{4 p-1} \\
& =\frac{2-5 p}{4 p-1}
\end{aligned}
$$

3. D

$$
\begin{aligned}
(x+y-1)(x-y+1) & =[x+(y-1)][x-(y-1)] \\
& =x^{2}-(y-1)^{2} \\
& =x^{2}-\left(y^{2}-2 y+1\right) \\
& =x^{2}-y^{2}+2 y-1
\end{aligned}
$$

4. B

$$
\begin{aligned}
\frac{4}{3 x+2}-\frac{1}{3 x-2} & =\frac{4(3 x-2)-(3 x+2)}{(3 x+2)(3 x-2)} \\
& =\frac{12 x-8-3 x-2}{9 x^{2}-4} \\
& =\frac{9 x-10}{9 x^{2}-4}
\end{aligned}
$$

5. D

$$
\begin{array}{ccc}
\frac{4 x-3}{7} \leq x-3 & \text { or } & 5 x-11>19 \\
4 x-3 \leq 7 x-21 & \text { or } & 5 x>30 \\
-3 x \leq-18 & \text { or } & x>6 \\
x \geq 6 & \text { or } & x>6
\end{array}
$$

Thus, the required solution is $x \geq 6$.
6. A

By remainder theorem, we have

$$
\begin{aligned}
\mathrm{f}\left(-\frac{2}{3}\right) & =0 \\
3 k\left(-\frac{2}{3}\right)^{4}+13\left(-\frac{2}{3}\right)^{3}+8\left(-\frac{2}{3}\right)+4 k & =0 \\
\frac{124}{27} k-\frac{248}{27} & =0 \\
k & =2
\end{aligned}
$$

By remainder theorem, we have
The required remainder $=f(-1)$

$$
\begin{aligned}
& =6(-1)^{4}+13(-1)^{3}+8(-1)+8 \\
& =-7
\end{aligned}
$$

7. B

Method 1

Putting $x=2$ into the identity, we have

$$
\begin{aligned}
(2)^{2}-3 m(2)+n & =[(2)-8][(2)+m]-3 n \\
4-6 m+n & =-12-6 m-3 n \\
n & =-4
\end{aligned}
$$

Method 2

$$
\begin{aligned}
& x^{2}-3 m x+n \equiv(x-8)(x+m)-3 n \\
& x^{2}-3 m x+n \equiv x^{2}+(m-8) x+(-8 m-3 n)
\end{aligned}
$$

Comparing the coefficient of the x term and the constant term, we have
$\left\{\begin{aligned}-3 m & =m-8 \\ n & =-8 m-3 n\end{aligned}\right.$
$\left\{\begin{aligned} m & =2 \\ 2 m+n & =0\end{aligned}\right.$
Solving, we have $m=2$ and $n=-4$.
8. C

$$
\begin{aligned}
\mathrm{f}(\mathrm{f}(k) \mathrm{f}(-k)) & =\mathrm{f}\left(\left(k^{2}+2 k-k^{2}\right)\left[(-k)^{2}+2(-k)-k^{2}\right]\right) \\
& =\mathrm{f}((2 k)(-2 k)) \\
& =\mathrm{f}\left(-4 k^{2}\right) \\
& =\left(-4 k^{2}\right)^{2}+2\left(-4 k^{2}\right)-k^{2} \\
& =16 k^{4}-8 k^{2}-k^{2} \\
& =16 k^{4}-9 k^{2}
\end{aligned}
$$

9. C

$$
\begin{aligned}
y & =(m-x)(x+n)-m n \\
& =\left(m x-x^{2}+m n-n x\right)-m n \\
& =-x^{2}+(m-n) x
\end{aligned}
$$

I $\quad \checkmark \quad$ The coefficient of $x^{2}=-1<0$ Thus, the graph opens downwards.
II $\quad \mathbf{x} \quad$ The y-intercept of the graph $=0$
Thus, the y-intercept of the graph is not negative.
III $\quad \checkmark \quad \operatorname{Put}(x, y)=(m-n, 0)$ into $y=-x^{2}+(m-n) x$.
L.H.S. $=0$ and R.H.S. $=-(m-n)^{2}+(m-n)(m-n)=0$ Thus, the graph passes through the point $(m-n, 0)$.
10. D

Let $\$ C$ be the cost of the bookshelf.
Then the marked price of the bookshelf is $\$ C \times(1+x \%)$.
Hence, the selling price of the bookshelf is $\$ C \times(1+x \%) \times(1-25 \%)$.

$$
\begin{aligned}
C \times(1+x \%) \times(1-25 \%) & =C \times(1+20 \%) \\
x & =60
\end{aligned}
$$

11. C

$$
\begin{aligned}
\text { The amount } & =18000 \times(1+3 \% \div 2)^{5 \times 2} \\
& \approx 20889.73485 \\
& \approx \$ 20890 \text { (corr. to the nearest dollar) }
\end{aligned}
$$

12. C

Note that the region on the map and the actual region are similar.
$\frac{\text { The area of the lake on the map }}{\text { The actual area of the lake }}=\left(\frac{1}{25000}\right)^{2}=\frac{1}{6.25 \times 10^{8}}$
Thus, we have
The area of the lake on the map $=2.4 \div\left(6.25 \times 10^{8}\right) \mathrm{km}^{2}$

$$
\begin{aligned}
& =\left[2.4 \times(1000 \times 100)^{2}\right] \div\left(6.25 \times 10^{8}\right) \mathrm{cm}^{2} \\
& =38.4 \mathrm{~cm}^{2}
\end{aligned}
$$

13. A

Let $z=\frac{a x^{3}}{\sqrt{y}}$, where a is a non-zero constant.
Then, we have $a=\frac{\sqrt{y} z}{x^{3}}$.
Let p be the percentage change in z when x is increased by 20% and y is increased by 125%.
Then we have

$$
\begin{aligned}
\frac{\sqrt{(1+125 \%) y}[(1+p) z]}{[(1+20 \%) x]^{3}} & =\frac{\sqrt{y} z}{x^{3}} \\
1+p & =1.152 \\
p & =0.152
\end{aligned}
$$

Thus, z is increased by 15.2%.
14. B

Let $T(m)$ be the number of dots in the m th pattern.
Note that (1): $\quad T(1)=2$
(2): $T(n+1)=T(n)+3$ for any positive integer n

$$
\begin{aligned}
T(12) & =T(11)+3 & & \text { (by (2) with } n=11) \\
& =T(10)+3+3 & & \text { (by (2) with } n=10) \\
& \vdots & & \\
& =T(1)+3+3+3+3+3+3+3+3+3+3+3 & & \text { (by (2) with } n=1) \\
& =2+3+3+3+3+3+3+3+3+3+3+3 & & \text { (by (1)) } \\
& =35 & &
\end{aligned}
$$

15. B

Note that $4.5 \mathrm{~cm} \leq A B<5.5 \mathrm{~cm}, 8.5 \mathrm{~cm} \leq B C<9.5 \mathrm{~cm}, 2.5 \mathrm{~cm} \leq E F<3.5 \mathrm{~cm}$ and $2.5 \mathrm{~cm} \leq A F<3.5 \mathrm{~cm}$. Let G be the point of intersection of $A B$ and $D E$ produced.
The area of the hexagon $=$ The area of the rectangle $A G E F+$ The area of the rectangle $B C D G$

$$
\begin{aligned}
& =E F \cdot A F+B G \cdot B C \\
& =E F \cdot A F+(A B-E F) \cdot B C
\end{aligned}
$$

Hence, the area of the hexagon increases when $A B, B C$ or $A F$ increases.
Let H be the point of intersection of $A F$ produced and $C D$ produced.
The area of the hexagon $=$ The area of the rectangle $A B C H$ - The area of the rectangle $D E F H$

$$
\begin{aligned}
& =A B \cdot B C-E F \cdot F H \\
& =A B \cdot B C-E F \cdot(B C-A F)
\end{aligned}
$$

Hence, the area of the hexagon decreases when $E F$ increases.

Therefore, we have

$$
\begin{aligned}
(3.5)(2.5)+(4.5-3.5)(8.5) & <x<(2.5)(3.5)+(5.5-2.5)(9.5) \\
17.25 & <x<37.25
\end{aligned}
$$

16. D

Let $b \mathrm{~cm}$ be the perpendicular distance between the opposite sides of the base.
Consider the volume of the pyramid.

$$
\begin{aligned}
\frac{1}{3}[(24) b](15) & =1920 \\
b & =16
\end{aligned}
$$

The height of the lateral faces of the pyramid $=\sqrt{\left(\frac{16}{2}\right)^{2}+15^{2}}=17 \mathrm{~cm}$
The total surface area of the pyramid $=(24)(16)+4 \cdot \frac{1}{2}(24)(17)=1200 \mathrm{~cm}^{2}$
17. C

Since $\triangle B D E$ and $\triangle A D E$ have common height, we have

$$
\frac{\text { The area of } \triangle B D E}{\text { The area of } \triangle A D E}=\frac{E B}{A E}=\frac{3}{4}
$$

Since $\triangle B D F$ and $\triangle B D E$ have common height, we have

$$
\frac{\text { The area of } \triangle B D F}{\text { The area of } \triangle B D E}=\frac{B F}{E B}=1
$$

In $\triangle A D F$ and $\triangle B G F$,

$$
\begin{array}{ll}
\angle A D F=\angle B G F & (\text { corr. } \angle \mathrm{s}, A D / / B C \text {) } \\
\angle D A F=\angle G B F & \text { (corr. } \angle \mathrm{s}, A D / / B C \text {) } \\
\angle A F D=\angle B F G & \text { (common } \angle \text {) }
\end{array}
$$

Hence, we have $\triangle A D F \sim \triangle B G F$. (AAA)
$A F: B F=(A E+E B+B F): B F=(4+3+3): 3=10: 3$
$D F: G F=A F: B F=10: 3 \quad$ (corr. sides, $\sim \Delta \mathrm{s}$)
Since $\triangle B D G$ and $\triangle B D F$ have common height, we have

$$
\frac{\text { The area of } \triangle B D G}{\text { The area of } \triangle B D F}=\frac{D G}{D F}=\frac{7}{10}
$$

Therefore, we have
The area of the quadrilateral $B E D G=$ The area of $\triangle B D E+$ The area of $\triangle B D G$

$$
\begin{aligned}
& =\text { The area of } \triangle A D E \times \frac{3}{4} \times\left(1+1 \times \frac{7}{10}\right) \\
& =40 \times \frac{51}{40} \\
& =51 \mathrm{~cm}^{2}
\end{aligned}
$$

18. B
$A E=B E \quad$ (given)
$\angle B A E=\angle A B E \quad$ (base $\angle \mathrm{s}$, isos. \triangle)
$\angle B A E+\angle A B E=180^{\circ}-\angle A E B=180^{\circ}-24^{\circ}=156^{\circ} \quad(\angle$ sum of $\triangle)$
Therefore, we have $\angle B A E=156^{\circ} \div 2=78^{\circ}$.
Note that $B C D E$ is a parallelogram.

$$
\begin{array}{rlrl}
C D & =B E & & \text { (prop. of } / / \text { gram }) \\
& =A C & & \text { (given) } \\
\angle D A C & =\angle A D C & & \text { (base } \angle \mathrm{s}, \text { isos. } \triangle \text {) } \\
& =\angle A E B & & (\text { corr. } \angle \mathrm{s}, C D / / B E) \\
& =24^{\circ} & & \\
\angle B A C= & \angle B A E-\angle D A C=78^{\circ}-24^{\circ}=54^{\circ}
\end{array}
$$

19. C
$\angle A B C=\angle B A C \quad$ (given)
$B C=A C=36 \mathrm{~cm} \quad$ (sides opp. equal $\angle \mathrm{s}$)
In $\triangle B C D$ and $\triangle D C E$,

$$
\begin{array}{ll}
\angle C B D=\angle C D E & \text { (given) } \\
\angle B C D=\angle D C E & \text { (common } \angle) \\
\angle B D C=\angle D E C & (\angle \text { sum of } \triangle)
\end{array}
$$

Hence, we have $\triangle B C D \sim \triangle D C E$. (AAA)

$$
\begin{aligned}
& \begin{aligned}
& \frac{C D}{C E}=\frac{B C}{D C} \quad(\text { corr. sides, } \sim \Delta \mathrm{s}) \\
& \frac{30}{C E}=\frac{36}{30} \\
& C E=25 \mathrm{~cm} \\
& B E=B C-C E=36-25=11 \mathrm{~cm} \\
& \text { In } \triangle A C D, \quad \angle A C D+\angle C A D=\angle C D B \\
&=\angle C D E+\angle B D E \\
& \angle A C D=\angle B D E
\end{aligned} \quad \quad(\text { ext. } \angle \text { of } \triangle \text {) }
\end{aligned}
$$

In $\triangle A C D$ and $\triangle B D E$,

$\angle C A D=\angle D B E$	
(given)	
$\angle A C D=\angle B D E$	(proved)
$\angle A D C=\angle B E D$	
(\angle sum of $\triangle)$	

Hence, we have $\triangle A C D \sim \triangle B D E$. (AAA)

$$
\begin{aligned}
& \frac{A D}{B E}=\frac{C D}{D E} \quad(\text { corr. sides }, \sim \Delta \mathrm{s}) \\
& \frac{A D}{11}=\frac{30}{15} \\
& A D=22 \mathrm{~cm}
\end{aligned}
$$

20. C
$B C=A D=26 \mathrm{~cm} \quad$ (prop. of $/ /$ gram)
$A B^{2}+A C^{2}=10^{2}+24^{2}=676$
$B C^{2}=26^{2}=676$
Hence, we have $A B^{2}+A C^{2}=B C^{2}$.
Therefore, we have $\angle B A C=90^{\circ}$. (converse of Pyth. theorem)
The area of the parallelogram $A B C D=A B \cdot A C=(10)(24)=240 \mathrm{~cm}^{2}$
21. D

Since $A C$ is a diameter of the circle $A B C D$, we have

$$
\begin{aligned}
\overparen{A B C} & =\overparen{A D C} \\
\overparen{A B}+\overparen{B C} & =\overparen{A D}+\overparen{C D} \\
\frac{3}{2} \overparen{C D}+\frac{6}{2} \overparen{C D} & =\overparen{A D}+\overparen{C D} \\
\overparen{A D} & =\frac{7}{2} \overparen{C D}
\end{aligned}
$$

Therefore, we have $\overparen{A B}: \overparen{B C}: \overparen{C D}: \overparen{A D}=3: 6: 2: 7$.

$\angle A C B: \angle B A C: \angle C B D: \angle A B D=3: 6: 2: 7 \quad$ (arcs prop. to \angle s at circumference)
Let $\angle A C B=3 x, \angle B A C=6 x, \angle C B D=2 x$ and $\angle A B D=7 x$.
$\angle B A C+\angle A B C+\angle A C B=180^{\circ} \quad(\angle$ sum of $\Delta)$

$$
6 x+(2 x+7 x)+3 x=180^{\circ}
$$

$$
x=10^{\circ}
$$

$$
\angle B E C=\angle B A C+\angle A B D=60^{\circ}+70^{\circ}=130^{\circ} \quad \text { (ext. } \angle \text { of } \triangle \text {) }
$$

22. D

Let F be the foot of perpendicular from D to $B C$.
Note that $A B F D$ is a rectangle.

$$
\begin{align*}
\frac{D F}{C D} & =\sin \angle D C F \\
\frac{A B}{C D} & =\sin \alpha \ldots \ldots \ldots \tag{1}\\
\frac{C E}{C D} & =\cos \angle D C E \\
& =\cos \beta \ldots \ldots \ldots . \tag{2}
\end{align*}
$$

(1) $\div(2): \quad \frac{A B}{C E}=\frac{\sin \alpha}{\cos \beta}$
23. B

The number of axes of reflectional symmetry of the figure is 2 . (See the figure below.)

24. B

Note that L is perpendicular to the perpendicular bisector of $A B$.
The slope of $L \times$ The slope of the perpendicular bisector of $A B=-1$

$$
\begin{aligned}
\left(-\frac{3}{-1}\right) \times\left(-\frac{k}{-12}\right) & =-1 \\
k & =-4
\end{aligned}
$$

Hong Kong

The x-intercept of $L=-\frac{h}{3}$ and The y-intercept of $L=-\frac{h}{-1}=h$
So, the coordinates of A and B are $\left(-\frac{h}{3}, 0\right)$ and $(0, h)$ respectively.
The coordinates of the mid-point of $A B=\left(\frac{1}{2}\left(-\frac{h}{3}+0\right), \frac{1}{2}(0+h)\right)=\left(-\frac{h}{6}, \frac{h}{2}\right)$
Note that the mid-point of $A B$ lies on the perpendicular bisector of $A B$.

$$
\begin{aligned}
(-4)\left(-\frac{h}{6}\right)-12\left(\frac{h}{2}\right)+3(-4)^{2} & =0 \\
h & =9
\end{aligned}
$$

The x-intercept of $L=-\frac{9}{3}=-3$
25. A

Denote the pole by O.
$\angle C O D=110^{\circ}-65^{\circ}=45^{\circ}$
$\angle D O E=155^{\circ}-110^{\circ}=45^{\circ}$
Note that $O C=O E$ and $O D$ bisects $\angle C O E$.
Hence, $O D$ is the perpendicular bisector of $C E$. (prop. of ios. \triangle)
Let F be the point of intersection of $C E$ and $O D$.
$C F=O C \sin \angle C O F=\sqrt{2} \sin 45^{\circ}=1$

$O F=O C \cos \angle C O F=\sqrt{2} \cos 45^{\circ}=1$
$C E=2 C F=2$
$D F=O D-O F=3-1=2$
The area of $\triangle C D E=\frac{1}{2} C E \cdot D F=\frac{1}{2}(2)(2)=2$
26. A

$$
\begin{aligned}
& A B=\sqrt{[(-2)-3]^{2}+(3-5)^{2}}=\sqrt{29} \\
& C D=\sqrt{[(-4)-1]^{2}+[(-3)-(-1)]^{2}}=\sqrt{29}
\end{aligned}
$$

Since the area of $\triangle P A B$ is equal to the area of $\triangle P C D$ and $A B=C D$, the perpendicular distance from P to $A B$ is equal to the perpendicular distance from P to $C D$.
The slope of $A B=\frac{3-5}{(-2)-3}=\frac{2}{5}$
The slope of $B C=\frac{(-1)-3}{1-(-2)}=-\frac{4}{3}$
The slope of $C D=\frac{(-3)-(-1)}{(-4)-1}=\frac{2}{5}$
So, the straight lines $A B$ and $C D$ are two parallel lines.
The locus of a moving point equidistant from two parallel lines is a straight line.
27. A

I $\quad \checkmark \quad$ Let G be the centre of C.

$$
\begin{aligned}
& \frac{x^{2}}{4}+\frac{y^{2}}{4}+8 x-12 y+39=0 \\
& x^{2}+y^{2}+32 x-48 y+156=0
\end{aligned}
$$

The coordinates of $G=\left(-\frac{32}{2},-\frac{-48}{2}\right)=(-16,24)$
The radius of $C=\sqrt{\left(\frac{32}{2}\right)^{2}+\left(\frac{-48}{2}\right)^{2}-156}=26$
$O G=\sqrt{[0-(-16)]^{2}+(0-24)^{2}}=\sqrt{832}$
Note that $O G$ is greater than the radius of C.
Thus, O lies outside C.
II $\quad \times \quad$ The perpendicular distance from G to the x-axis $=24-0=24$
Note that the perpendicular distance from G to the x-axis is smaller than the radius of C.
Hence, C cuts the x-axis at two distinct points.
Thus, C does not lie in the second quadrant.
III $\quad \boldsymbol{x}$ The perpendicular distance from G to the y-axis $=0-(-16)=16$
Note that the perpendicular distance from G to the y-axis is smaller than the radius of C.
Hence, C cuts the y-axis at two distinct points.
Consider the case when P is a point of intersection between C and the x-axis and Q is a point of intersection between C and the y-axis.
$\angle P O Q$ is equal to a right angle.
Thus, $\angle P O Q$ is not smaller than a right angle for this case.
28. A

There are 36 possible outcomes, namely $\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{1,7\},\{1,8\},\{1,9\}$, $\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,7\},\{2,8\},\{2,9\},\{3,4\},\{3,5\},\{3,6\},\{3,7\},\{3,8\},\{3,9\},\{4,5\}$, $\{4,6\},\{4,7\},\{4,8\},\{4,9\},\{5,6\},\{5,7\},\{5,8\},\{5,9\},\{6,7\},\{6,8\},\{6,9\},\{7,8\},\{7,9\}$ and $\{8,9\}$.
There are 14 favourable outcomes, namely $\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{1,7\},\{1,8\},\{1,9\}$, $\{2,4\},\{2,6\},\{2,8\},\{3,6\},\{3,9\}$ and $\{4,8\}$.
The required probability $=\frac{14}{36}=\frac{7}{18}$
29. A

Since there are 18 data, the lower quartile is the 5 th ordered datum and the upper quartile is the 14 th ordered datum.
The lower quartile of the distribution $=3$
The upper quartile of the distribution $=5$
The inter-quartile range of the distribution $=5-3=2$
30. C

The sum of the 15 integers is $120+2 k$.
Consider the values of a, b and c according to the value of k.

k	a (mean)	b (median)	c (mode)	$a \geq b$	$a \geq c$	$b \geq c$
7	$\frac{134}{15}$	9	7	\mathbf{x}	\checkmark	\checkmark
8	$\frac{136}{15}$	9	8	\checkmark	\checkmark	\checkmark
9	$\frac{46}{5}$	9	9	\checkmark	\checkmark	\checkmark

31. C

$$
\begin{aligned}
3 \times 64^{5}-7 \times 128^{3}+11 \times 256 & =3 \times\left(2^{6}\right)^{5}-7 \times\left(2^{7}\right)^{3}+11 \times 2^{8} \\
& =3 \times 2^{30}-7 \times 2^{21}+11 \times 2^{8} \\
& =3 \times 2^{4 \times 7+2}-7 \times 2^{4 \times 5+1}+11 \times 2^{4 \times 2} \\
& =3 \times 2^{2} \times\left(2^{4}\right)^{7}-7 \times 2^{1} \times\left(2^{4}\right)^{5}+11 \times\left(2^{4}\right)^{2} \\
& =12 \times 16^{7}-14 \times 16^{5}+11 \times 16^{2} \\
& =11 \times 16^{7}+\left(16^{2}-14\right) \times 16^{5}+11 \times 16^{2} \\
& =11 \times 16^{7}+(15 \times 16+16-14) \times 16^{5}+11 \times 16^{2} \\
& =11 \times 16^{7}+(15 \times 16+2) \times 16^{5}+11 \times 16^{2} \\
& =11 \times 16^{7}+15 \times 16^{6}+2 \times 16^{5}+11 \times 16^{2} \\
& =\text { BF 200B00 }
\end{aligned}
$$

32. D

I $\quad \checkmark \quad$ When $x=0$, since the graph of $y=k b^{x}$ lies below the graph of $y=a^{x}$, we have $k b^{0}<a^{0}$. Thus, we have $k<1$.
II $\quad \checkmark \quad$ Since the graph of $y=a^{x}$ is downward sloping, a^{x} is a decreasing function of x.
Hence, we have $0<a<1$.
Since the graph of $y=k b^{x}$ is upward sloping, $k b^{x}$ is an increasing function of x.
Since $k>0, b^{x}$ is an increasing function of x.
Hence, we have $b>1$.
Thus, we have $a<b$.
III $\quad \checkmark \quad$ When $x \geq k$, since the graph of $y=a^{x}$ lies below the graph of $y=k b^{x}$, we have $a^{x}<k b^{x}$.
Since $1>k$, we have $a^{1}<k b^{1}$.
Thus, we have $a<k b$.
33. B

By the relations between roots and coefficients, we have $\alpha+\beta=-\frac{m}{1}=-m$.

$$
\begin{aligned}
\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha} & =(\alpha+\beta)\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)-\alpha-\beta \\
& =(\alpha+\beta)\left[\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)-1\right] \\
& =(-m)\left[\left(\frac{m}{2}-2\right)-1\right] \\
& =\frac{6 m-m^{2}}{2}
\end{aligned}
$$

34. A

I
$a_{6} a_{7} a_{8} a_{9} a_{10}=-64$

$$
\begin{aligned}
a_{8}^{5} & =-64 \\
a_{8} & =-2^{\frac{6}{5}}
\end{aligned}
$$

Therefore, a_{8} is an irrational number.
Thus, some of the terms of the sequence are irrational numbers.
II $\quad \checkmark \quad$ Let r be the common ratio of the geometric sequence.
Note that $a_{2}=\frac{a_{8}}{r^{6}}$.
Since $a_{8}<0$ and $r^{6}>0$, we have $a_{2}<0$.
III $\mathbf{x} \quad$ Note that $a_{1}+a_{2}=a_{1}+a_{1} r=a_{1}(1+r)$.
Since $a_{1}>0$ and $a_{1}+a_{2}>0$, we have $1+r>0$.
Thus, we have $r>-1$.
35. B

I $\mathbf{x} \quad u=\frac{1}{k i+2}=\frac{1}{k i+2} \cdot \frac{-k i+2}{-k i+2}=\frac{-k i+2}{k^{2}+4}$ and $v=\frac{1}{k i-2}=\frac{1}{k i-2} \cdot \frac{-k i-2}{-k i-2}=\frac{-k i-2}{k^{2}+4}$

So, the real part of u and the real part of v are $\frac{2}{k^{2}+4}$ and $\frac{-2}{k^{2}+4}$ respectively.
Thus, the real part of u is not equal to the real part of v.
II
$\checkmark \quad \frac{1}{u}=k i+2$ and $\frac{1}{v}=k i-2$
So, the imaginary parts of $\frac{1}{u}$ and $\frac{1}{v}$ are both k.
Thus, the imaginary part of $\frac{1}{u}$ is equal to the imaginary part of $\frac{1}{v}$.
III $\quad \times \quad u+v=\frac{-k i+2}{k^{2}+4}+\frac{-k i-2}{k^{2}+4}=\frac{-2 k i}{k^{2}+4}$
Since k is an irrational number, we have $k \neq 0$.
Hence, $u+v$ is not a real number.
Thus, $u+v$ is not an irrational number.
36. C

The figure below shows D.

Solving $x=-10$ and $y=14$, we have $\quad(x, y)=(-10,14)$.
Solving $y=14$ and $5 x+3 y=67$, we have $(x, y)=(5,14)$.
Solving $5 x+3 y=67$ and $x=8$, we have $(x, y)=(8,9)$.
Solving $x=8$ and $x-6 y=20$, we have $\quad(x, y)=(8,-2)$.
Solving $x-6 y=20$ and $x=-10$, we have $(x, y)=(-10,-5)$.
Note that the greatest value is attained at a corner point.
$\operatorname{At}(x, y)=(-10,14), \quad 4 x-5 y=4(-10)-5(14)=-110$
At $(x, y)=(5,14), \quad 4 x-5 y=4(5)-5(14)=-50$
At $(x, y)=(8,9), \quad 4 x-5 y=4(8)-5(9)=-13$
At $(x, y)=(8,-2), \quad 4 x-5 y=4(8)-5(-2)=42$
At $(x, y)=(-10,-5), 4 x-5 y=4(-10)-5(-5)=-15$
Thus, the greatest value of $4 x-5 y$ is 42 .
37. A

$$
\begin{aligned}
13 \sin x+5 \cos ^{2} x & =11 \\
13 \sin x+5\left(1-\sin ^{2} x\right) & =11 \\
5 \sin ^{2} x-13 \sin x+6 & =0 \\
(5 \sin x-3)(\sin x-2) & =0
\end{aligned}
$$

$$
\begin{aligned}
\sin x & =\frac{3}{5} \\
x & \approx 36.86989765^{\circ} \text { or } 143.1301024^{\circ}
\end{aligned}
$$

Thus, the equation has 2 roots.
38. C
I. $\quad \checkmark \quad$ Let $A B=(x+14) \mathrm{cm}$.

Then we have $A C=(x-14) \mathrm{cm}$.
By Heron's formula, we have

$$
\begin{aligned}
& s=\frac{A B+A C+B C}{2}=\frac{(x+14)+(x-14)+36}{2}=(x+18) \mathrm{cm} \\
& \sqrt{s(s-A B)(s-A C)(s-B C)}=176 \\
& s(s-A B)(s-A C)(s-B C)=30976 \\
& (x+18)[(x+18)-(x+14)][(x+18)-(x-14)][(x+18)-36]=30976 \\
& (x+18)(4)(32)(x-18)=30976 \\
& (x+18)(x-18)=242 \\
& x^{2}-324=242 \\
& x^{2}=566 \\
& x=\sqrt{566} \text { or }-\sqrt{566} \quad \text { (rejected) }
\end{aligned}
$$

Therefore, we have $A B=(\sqrt{566}+14) \mathrm{cm}$ and $A C=(\sqrt{566}-14) \mathrm{cm}$.
Note that $A B \approx 37.79075451 \mathrm{~cm}<40 \mathrm{~cm}$.
Thus, the length of the longest side of $\triangle A B C$ is smaller than 40 cm .
II \times
$B C-A C=36-(\sqrt{566}-14) \approx 26.20924549 \mathrm{~cm}$
$A B-B C=(\sqrt{566}+14)-36 \approx 1.790754507 \mathrm{~cm}$
Hence, we have $B C-A C \neq A B-B C$.
Thus, the lengths of the sides of $\triangle A B C$ cannot form an arithmetic sequence.
III. \checkmark By cosine formula, we have

$$
\begin{aligned}
\cos \angle A C B & =\frac{A C^{2}+B C^{2}-A B^{2}}{2(A C)(B C)} \\
& =\frac{(\sqrt{566}-14)^{2}+36^{2}-(\sqrt{566}+14)^{2}}{2(\sqrt{566}-14)(36)} \\
\angle A C B & \approx 92.95025902^{\circ} \\
& >90^{\circ}
\end{aligned}
$$

Thus, $\triangle A B C$ is an obtuse-angled triangle.
39. D

Let R be a point on the straight line $P Q$ such that $A E B R$ is a straight line.

$$
\begin{aligned}
\angle B C R & =\angle B A C=19^{\circ} \quad(\angle \text { in alt. segment }) \\
\angle A C B & =90^{\circ} \quad(\angle \text { in semi-circle }) \\
\angle A R C & =180^{\circ}-\angle C A R-\angle A C R \quad(\angle \text { sum of } \triangle) \\
& =180^{\circ}-19^{\circ}-\left(90^{\circ}+19^{\circ}\right) \\
& =52^{\circ}
\end{aligned}
$$

$C R=E R \quad$ (tangent properties)
$\angle C E R=\angle E C R \quad$ (base $\angle \mathrm{s}$, isos. \triangle)
$\angle C E R+\angle E C R=180^{\circ}-\angle A R C=180^{\circ}-52^{\circ}=128^{\circ} \quad(\angle \operatorname{sum}$ of $\Delta)$
Therefore, we have $\angle E C R=128^{\circ} \div 2=64^{\circ}$.
$\angle C D E=\angle E C R=64^{\circ} \quad(\angle$ in alt. segment $)$

40. D

Method 1

Let p and q be the x-coordinates of P and Q respectively.
Putting $y=-3 x+8$ into $9 x^{2}+9 y^{2}-18 x+2 k y-72=0$, we have

$$
\begin{align*}
9 x^{2}+9(-3 x+8)^{2}-18 x+2 k(-3 x+8)-72 & =0 \\
9 x^{2}+9\left(9 x^{2}-48 x+64\right)-18 x+2 k(-3 x+8)-72 & =0 \\
90 x^{2}+(-6 k-450) x+(16 k+504) & =0 \tag{}
\end{align*}
$$

So, p and q are the roots of (*).
By the relations between roots and coefficients, we have $p+q=-\frac{-6 k-450}{90}=\frac{k+75}{15}$.
The x-coordinate of the mid-point of $P Q=\frac{p+q}{2}=\frac{k+75}{30}$
Note that the x-intercept of the straight line $3 x+y-8=0$ is $\frac{8}{3}$.

$$
\begin{array}{r}
\frac{k+75}{30}=\frac{8}{3} \\
k=5
\end{array}
$$

Method 2

Let O and M be the centre of the circle and the mid-point of $P Q$ respectively.

$$
\begin{aligned}
9 x^{2}+9 y^{2}-18 x+2 k y-72 & =0 \\
x^{2}+y^{2}-2 x+\frac{2 k}{9} y-8 & =0
\end{aligned}
$$

The coordinates of $O=\left(-\frac{-2}{2},-\frac{1}{2}\left(\frac{2 k}{9}\right)\right)=\left(1,-\frac{k}{9}\right)$

Note that the x-intercept of the straight line $3 x+y-8=0$ is $\frac{8}{3}$.
So, the coordinates of M are $\left(\frac{8}{3}, 0\right)$.
Note that $O M \perp P Q$. (line joining centre and mid-pt. of chord \perp chord)
The slope of $O M \times$ The slope of $P Q=-1$

$$
\begin{aligned}
\frac{0-\left(-\frac{k}{9}\right)}{\frac{8}{3}-1} \times\left(-\frac{3}{1}\right) & =-1 \\
k & =5
\end{aligned}
$$

41. C

Since I is the in-centre of $\triangle O A B$, the x-axis bisects $\angle A O B$.
So, the slope of $O A$ and the slope of $O B$ are opposite numbers of each other.
Let A^{\prime} and B^{\prime} be A and B such that the slope of $O A^{\prime}$ is positive and the slope of $O B^{\prime}$ is negative.
Let m be the slope of $O A^{\prime}$.
Let a and b be the x-coordinates of A^{\prime} and B^{\prime} respectively.
Then, the y-coordinates of A^{\prime} and B^{\prime} are $m a$ and $-m b$ respectively.
Note that A^{\prime} lies on L.

$$
\begin{aligned}
117 a+44(m a)-6720 & =0 \\
a & =\frac{6720}{117+44 m}
\end{aligned}
$$

Note that B^{\prime} lies on L.

$$
\begin{aligned}
117 b+44(-m b)-6720 & =0 \\
b & =\frac{6720}{117-44 m}
\end{aligned}
$$

Let C be the point of intersection of L and the x-axis.
Then, the coordinates of C are $\left(\frac{2240}{39}, 0\right)$.
The area of $\Delta O A^{\prime} C+$ The area of $\Delta O B^{\prime} C=$ The area of $\Delta O A^{\prime} B^{\prime}$

$$
\begin{aligned}
\frac{1}{2}\left(\frac{2240}{39}-0\right)\left(\frac{6720 m}{117+44 m}-0\right)+\frac{1}{2}\left(\frac{2240}{39}-0\right)\left(0-\frac{-6720 m}{117-44 m}\right) & =2688 \\
\frac{1120}{39}\left(\frac{6720 m}{117+44 m}+\frac{6720 m}{117-44 m}\right) & =2688 \\
2800 m[(117-44 m)+(117+44 m)] & =39(117+44 m)(117-44 m) \\
655200 m & =39\left(13689-1936 m^{2}\right) \\
1936 m^{2}+16800 m-13689 & =0 \\
(4 m-3)(484 m+4563) & =0 \\
m & =\frac{3}{4} \text { or }-\frac{4563}{484} \text { (rejected) }
\end{aligned}
$$

Therefore, the coordinates of A^{\prime} and B^{\prime} are $\left(\frac{224}{5}, \frac{168}{5}\right)$ and $(80,-60)$ respectively.
$O A^{\prime}=\sqrt{\left(\frac{224}{5}-0\right)^{2}+\left(\frac{168}{5}-0\right)^{2}}=56$
$O B^{\prime}=\sqrt{(80-0)^{2}+[(-60)-0]^{2}}=100$
$A^{\prime} B^{\prime}=\sqrt{\left(80-\frac{224}{5}\right)^{2}+\left[(-60)-\frac{168}{5}\right]^{2}}=100$

Since $\triangle O A^{\prime} I, \Delta O B^{\prime} I$ and $\Delta A^{\prime} B^{\prime} I$ have equal heights, we have
The area of $\Delta O A^{\prime} I$: The area of $\Delta O B^{\prime} I$: The area of $\Delta A^{\prime} B^{\prime} I=O A^{\prime}: O B^{\prime}: A^{\prime} B^{\prime}$
Note that the sum of the areas of $\Delta O A^{\prime} I, \Delta O B^{\prime} I$ and $\Delta A^{\prime} B^{\prime} I$ is equal to the area of $\Delta O A^{\prime} B^{\prime}$.
Therefore, we have

$$
\text { The area of } \Delta A^{\prime} B^{\prime} I=\text { The area of } \Delta O A^{\prime} B^{\prime} \times \frac{A^{\prime} B^{\prime}}{O A^{\prime}+O B^{\prime}+A^{\prime} B^{\prime}}=2688 \times \frac{100}{56+100+100}=1050
$$

Thus, the area of $\triangle A B I$ is 1050 .
42. D

The number of groups consisting of exactly 5 students that can be formed is the number of ways to choose 5 from the 24 students.

The number of groups consisting of exactly 0 girls that can be formed is the number of ways to choose 5 from the 11 boys.

The number of groups consisting of exactly 1 girl that can be formed is the number of ways to choose 1 from the 13 girls and choose 4 from the 11 boys.
The required number $=C_{5}^{24}-C_{5}^{11}-C_{1}^{13} C_{4}^{11}$

$$
=37752
$$

43. A

The required probability $=\frac{8}{10} \cdot \frac{7}{9} \cdot \frac{6}{8} \cdot \frac{2}{7}$

$$
=\frac{2}{15}
$$

44. B

Let σ marks be the standard deviation of the examination scores; and s be the standard score of the girl.
$\left\{\begin{aligned} 60+2.5 \sigma & =70 \\ 60+s \sigma & =65 .\end{aligned}\right.$
$(1) \times s-(2) \times 2.5: \quad 60 s-150=70 s-162.5$ $s=1.25$
45. B

I $\quad \mathbf{x}$ Subtracting 2 from each number of the set subtracts 2 from the median.
Dividing each resulting number by 2 makes the median become $\frac{1}{2}$ times the original value.
The median of the new set of numbers $=\frac{m-2}{2}=\frac{m}{2}-1$
II $\quad \checkmark \quad$ Subtracting 2 from each number of the set does not make any change to the range.
Dividing each resulting number by 2 makes the range become $\frac{1}{2}$ times the original value.
The range of the new set of numbers $=\frac{r}{2}$
III \mathbf{x} Subtracting 2 from each number of the set does not make any change to the variance.
Dividing each resulting number by 2 makes the variance become $\frac{1}{2^{2}}$ times the original value.

The variance of the new set of numbers $=\frac{v}{2^{2}}=\frac{v}{4}$

Candidates Performance

Paper 1

Candidates generally performed better in Section A than in Section B.
Section A (1)

6 (a) Very good. About 90% of the candidates were able to find the range of x.

Common Mistakes:

- Few candidates were unable to properly handle the coefficients of the other terms when rounding the coefficient of x to the nearest integer.

For example: $\frac{5 x+22}{3} \geq 2(x+3) \quad \Rightarrow \quad 5 x+22 \geq 6 x+6$

- Few candidates neglected to change the inequality sign when changing the coefficient of x to a positive number.

For example: $-x \geq-4 \Rightarrow x \geq 4$
Good. About 60% of the candidates were able to find the number of positive integers that satisfied the compound inequality.

Common Mistakes:

- Some candidates were unable to examine the question carefully and did not answer with the number of positive integers which satisfied the compound inequalities.

Example: The required numbers are 3 and 4 .

Suboptimal method:

Few candidates copied the answer to (a) completely or did not mention the range of the inequality at all because one of the inequalities was the same as the one in (a). The former was too time-consuming and the latter resulted in incomplete answers. A better way to write the answer is to simply state that it follows the previous question or by (a), and then write the conclusion $2.25 \leq x \leq 4$, so the required number is 2 .

7	Fair. Many candidates were unable to obtain $\angle C D E$. Common Mistakes: $-\quad$ Few candidates incorrectly assumed $\angle E A C=90^{\circ}$ because $A E$ looked like perpendicular to $A C$ in the diagram. $B D$ was the perpendicular bisector of $A C$. Suboptimal method: Some candidates used angles as descriptions only. This method does not explicitly indicate which For example: $180^{\circ}-32^{\circ}-32^{\circ}-90^{\circ}=26^{\circ}$ Few candidates illustrated certain angles by proving congruent triangles, which is a time-consuming method.

Section A (2)

discussion should be checked carefully for errors.

- Candidates confused the concept of " Γ intersects with x-axis" and " Γ intersects with y-axis".

For example: Let the coordinates of D be $(x, 0)$.
(b) (ii) (2)

Poor. Most candidates were unable to find the ratio of the areas of the two triangles correctly.
Common Mistakes:

- Candidates want to use the ratio relationship to solve the question, but the two triangles they want to compare in this question are not similar triangles and the ratio of their areas is not the ratio of the square of the side lengths.

For example: Area of $\triangle A B E:$ Area of $\triangle A D E=A B^{2}: A D^{2}$.

- Graphing is not necessary, but sometimes graphing can enhance understanding of the question and help finding ideas. Some candidates failed to understand the position of the two triangles on the rectangular coordinate system and made some incorrect judgments.

For example: $A E \perp D E$ or $A E \perp B E$.

Section B

(c) (ii)

Poor. Most candidates were unable to explain that A, B, Q and R are not concyclic correctly.

Common Mistakes:

- Some candidates were unable to notice that the orthocentre of $\triangle A B Q$ was on the straight line $x=3 k$ and thus were unable to calculate $k=6$.
- The product of the slopes of two perpendicular lines is -1 . Few candidates applied this concept incorrectly.
For example: $m_{A Q}=k, m_{B Q}=-k, \frac{k}{-1}=-k, \Rightarrow A Q \perp B Q$

Candidates' Performance

Paper 2

The paper consisted of 45 multiple-choice items. The mean score was 22.7. Post-examination analysis revealed the following:

1. Candidates' performance was good on Items $1,3,4,5,11,14$ and 44 . Over 70% of the candidates answered them correctly.
2. Candidates' performance on Items $15,16,21,32,33,34$, and 40 was unsatisfactory. Less than 30% of the candidates gave the correct answers.

Common mistakes made by candidates:

1. In Item 12, many candidates confused the relationship between area and length in similar graphs and hence wrongly gave Option A as the answer.
Q. 12 The scale of a map is $1: 25000$. If the actual area of a lake is $2.4 \mathrm{~km}^{2}$, then the area of the lake on the map is
A. $\quad 9.6 \mathrm{~cm}^{2}$.
B. $23.04 \mathrm{~cm}^{2}$.
*C. $38.4 \mathrm{~cm}^{2}$.
D. $92.16 \mathrm{~cm}^{2}$.

2. In Item 15, many candidates mistakenly thought that taking the maximum of the range of all the measured lengths on the diagram would result in the largest area and hence wrongly gave Option D as the answer.
Q. 15 In the diagram, $A B C D E F$ is a hexagon in which all the measurements are corrected to the nearest cm . Let $x \mathrm{~cm}^{2}$ be the actual area of the hexagon. Find the range of values of x.

A. $15.5<x<38.5$
*B. $17.25<x<37.25$
. $20.75<x<34.75$
C. $20.75<x<34.75$
D. $23.25 \leq x<31.25$
3. In Item 16, many candidates thought that the lateral height of the pyramid was 15 cm and hence wrongly gave Option C as the answer.
Q. 16 The base of a solid pyramid is a rhombus and its side length is 24 cm . The sides of the pyramid are known to be congruent. If the height and volume of the pyramid are 15 cm and $1920 \mathrm{~cm}^{3}$ respectively, then the total surface area of the pyramid is
A. $720 \mathrm{~cm}^{2}$.
B. $816 \mathrm{~cm}^{2}$.
C. $1104 \mathrm{~cm}^{2}$.
*D. $1200 \mathrm{~cm}^{2}$.

4. In Item 21, many candidates thought that E was the centre of the circle and hence wrongly gave Option C as the answer.
Q. $21 \quad A C$ is a radius of circle $A B C D . A C$ intersects $B D$ at point E. If $\overparen{A B}: \overparen{B C}: \overparen{C D}=3: 6: 2$, then $\angle B E C=$
A. 50°.
B. 60°.
C. 120°.
*D. 130°.
5. In Item 27, the equation of the graph on a rectangular coordinate system was generally a weaker area for candidates. Many candidates failed to understand the graph of circle C on the rectangular coordinate system in this item and hence gave wrong answers.
Q. 27 The equation of circle C is $\frac{x^{2}}{4}+\frac{y^{2}}{4}+8 x-12 y+39=0$. The origin is defined as O. Which of the following (s) is/are correct?
I. O is outside of C.
II. C is in the second quadrant.
III. For any two points P and Q on $C, \angle P O Q$ must be less than a right angle.
*A. I only
B. II only
C. I and III only
D. II and III only

6. In Item 32, many candidates wrongly thought that $y=k b^{x}$ is an ascending curve and thus $k>1$ and hence wrongly gave Option C as the answer.
Q. 32 The Cartesian coordinate system shows the graph of $y=a^{x}, y=k b^{x}$ and straight line $x=k$, in which a, b and k are both real numbers. Which of the followings) is/are correct?
I. $k<1$
II. $a<b$
III. $a<k b$

A. I and II only
B. I and III only
C. II and III only
*D. I, II and III
7. In Item 33, many candidates confused the positive and the negative signs while applying the relationship between the roots of quadratic equation and its coefficients, and hence wrongly gave Option C as the answer.
Q. 33 Let α and β be the roots of the quadratic equation $x^{2}+m x+n=0$, where m is a constant and n is a non-zero constant. If $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{m}{2}-2$, then $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=$
A. $\frac{2 m-m^{2}}{2}$.
*B. $\frac{6 m-m^{2}}{2}$.
C. $\frac{m^{2}-2 m}{2}$.
D. $\frac{m^{2}-6 m}{2}$.

8. In Item 34, many candidates wrongly thought that the common ratio of a_{n} is a negative number and given that $a_{6} a_{7} a_{8} a_{9} a_{10}=-64$, there are no irrational numbers in a_{n}, Therefore, they mistook I be an incorrect statement and III be a correct one, and hence wrongly gave Option C as the answer.
Q. 34 Let a_{n} be the nth term of a geometric sequence. If $a_{6} a_{7} a_{8} a_{9} a_{10}=-64$ and for any positive integer n, the sum of the first n terms of the series is positive, then which of the followings) must be true?
I. There are some irrational numbers in the sequence.
II. The second term of the sequence is a negative number.
III. The common ratio of the sequence is less than -1 .
*A. I and II only
B. I and III only
C. II and III only
D. I , II and III
9. In Item 40, "The x-coordinate of the midpoint of two points is equal to the sum of the two x-coordinates and then divided by 2." Some candidates have ignored the step of dividing by 2 and hence wrongly gave Option C as the answer.
Q. 40 Let k be a constant. Straight line $3 x+y-8=0$ intersects circle $9 x^{2}+9 y^{2}-18 x+2 k y-72=0$ at points P and Q. If the midpoint of $P Q$ is lying on the x-axis, find k.
A. -155
B. -115
C. -35
*D. 5

